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Multi-Classification via Grid Clustering
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Question: which partition is better?

• Statistical Reliability vs. Precision Tradeoff

• Relate with generalization properties

The Approach We Take

Some other 

partition



Some Definitions

• Classification via Stochastic Grid 

Clustering:

– A set of stochastic mappings qi(Ci|Xi)

– A classification rule q(Y|C1,..,Cd)

• Collectively denote:

– Q = {{qi(Ci|Xi)}, q(Y|C1,..,Cd)}
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Generalization Bound

• With probability ≥ 1-d:
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Generalization Bound
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ni=|Xi|
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Generalization Bound

• With probability ≥ 1-d:
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Information 

preserved by 

qi(Ci|Xi)

(w.r.t. p(Xi)=1/ni)
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Generalization Bound

• With probability ≥ 1-d:
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Independent of 

qi(Ci|Xi)
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Generalization Bound

• With probability ≥ 1-d:
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Sample size
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Generalization Bound

• With probability ≥ 1-d:
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Optimization tradeoff:

Empirical loss vs. 

“Effective” partition 
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Generalization Bound

• With probability ≥ 1-d:
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Proof Idea

• Start with the PAC-Bayesian bound:

– [McAllester 99], [Maurer 04]
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Proof Idea

• Start with the PAC-Bayesian bound:

– [McAllester 99], [Maurer 04]

• Design a combinatorial prior P(h) by 

counting the number of hard partitions
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Proof Idea

• Start with the PAC-Bayesian bound:

– [McAllester 99], [Maurer 04]

• Design a combinatorial prior P(h) by 

counting the number of hard partitions

• Calculate D(Q||P)

N

/(N)/(P)D(Q
(Q)LL(Q)

2

)1ln24ln||ˆ d




Proof Idea

• Start with the PAC-Bayesian bound:

– [McAllester 99], [Maurer 04]

• Design a combinatorial prior P(h) by 

counting the number of hard partitions

• Calculate D(Q||P)

• Details: at the paper/poster
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Messages

• For Clustering:

– Evaluate clustering by its generalization 

properties on the task it is designed for

• For Classification:

– Unify feature values to amplify statistical 

reliability



Classification by a Single Feature

• A tighter and simpler bound

• Application: Feature Ranking



Classification by a Single Feature
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cyqxcqq(y|x) )|()|(:Define

Equivalent “Direct Mapping”



Optimality of Direct Mappings
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Optimality of Direct Mappings
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A Bound for Direct Mappings
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• Tighter than the bound on L(QC)
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• Tighter than the bound on L(QC)

• Holds for any classification rule q(Y|X)

A Bound for Direct Mappings

N

KYXnI
QLQL U

2

');(
)(ˆ)(






• Tighter than the bound on L(QC)

• Holds for any classification rule q(Y|X)

• Can be optimized (gradient descent) with 

respect to q(Y|X) to provide an optimal 

classification rule

A Bound for Direct Mappings
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• Tighter than the bound on L(QC)

• Holds for any classification rule q(Y|X)

• Can be optimized (gradient descent) with 

respect to q(Y|X) to provide an optimal 

classification rule

• No need for intermediate clustering

– Only for a single feature

A Bound for Direct Mappings
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• is minimized by qml(y|x)

Some Insights
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• is minimized by qml(y|x)

• For IU(X;Y)=0, L(Q) is minimized by qml(y)

Some Insights
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• is minimized by qml(y|x)

• For IU(X;Y)=0, L(Q) is minimized by qml(y)

• Thus L(Q) is minimized by smoothing qml(y|x) 

toward qml(y)

Some Insights
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Application: Feature Ranking

• Rank features by their generalization 

potential

– And not mutual information or correlation 

with the label

• Especially important for features of 

different cardinalities and small sample

– Example: Y=cancer/no_cancer

X1=smoking/not_smoking

X2=year_of_birth



Related work

• Sabato, Shalev-Shwartz, COLT07

– Generalization bound for q(Y|X)=p(Y|X) 

(empirical distribution)

• Our work:

– Any q(Y|X), in particular qml(Y|X)



Contraceptive Method Choice
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Mushrooms
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Letters
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Comparison with MI and Corr
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• Generalization bound for multi-

classification based on grid clustering

• Unify feature values to amplify statistics

• Evaluation of clustering by its 

generalization power on a given task

• Feature Ranking

• Limitation: high dimensions

Summary



Future Work

• Derive a generalization bound for 

general graphical models

X1 Xd…

C1 Cd…

Y

X1 Xd…

Z

Y

Grid Clustering Factor Model


