Multi-Classification by Categorical Features via Clustering

Yevgeny Seldin Joint work with Naftali Tishby

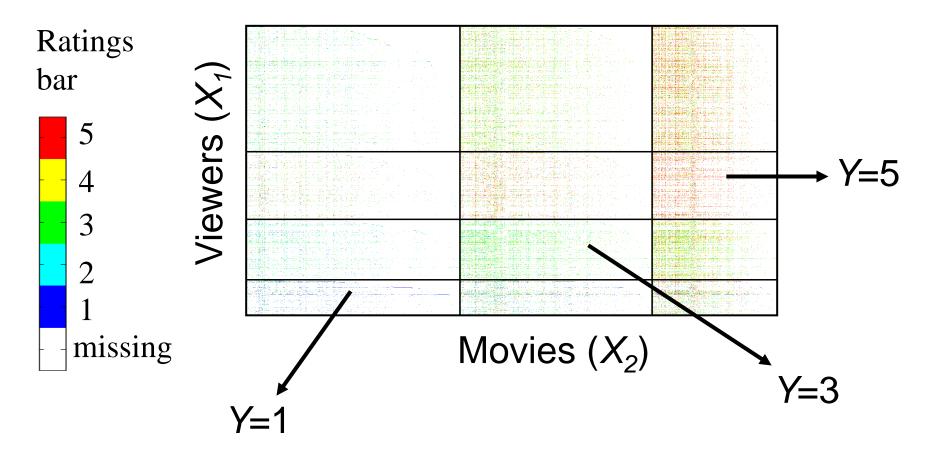
The Hebrew University of Jerusalem

Multi-Classification by Categorical Features Example: Collaborative Filtering					
Ratings bar 5 4 3 2 1 1 missing	Viewers (X ₁)				

MovieLens Data

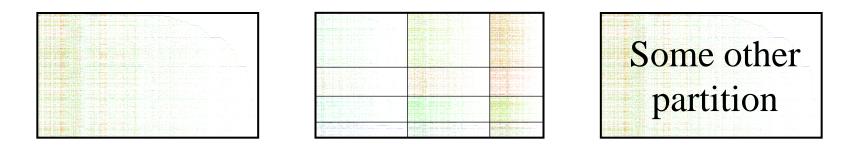
Movies (X_2)

Multi-Classification via Grid Clustering



[Seldin, Slonim & Tishby, NIPS06]

Question: which partition is better?



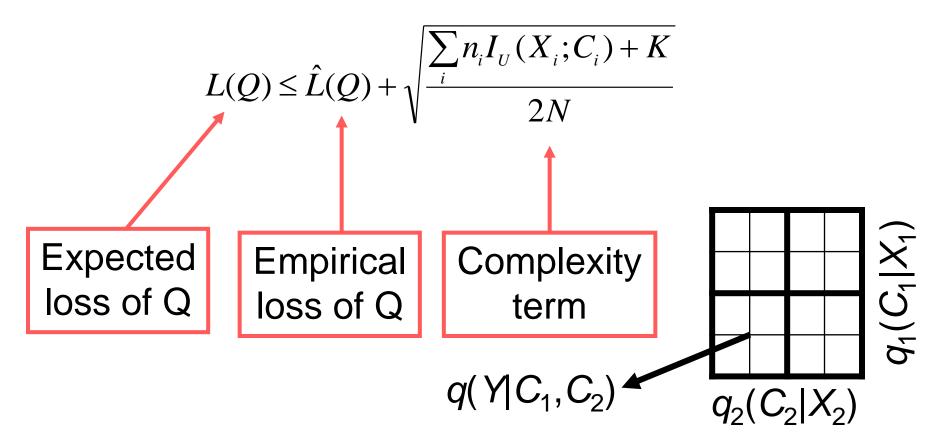
Statistical Reliability vs. Precision Tradeoff

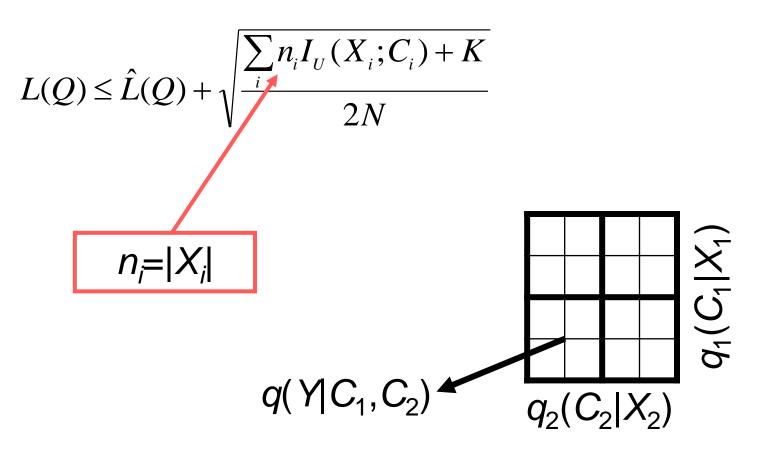
The Approach We Take

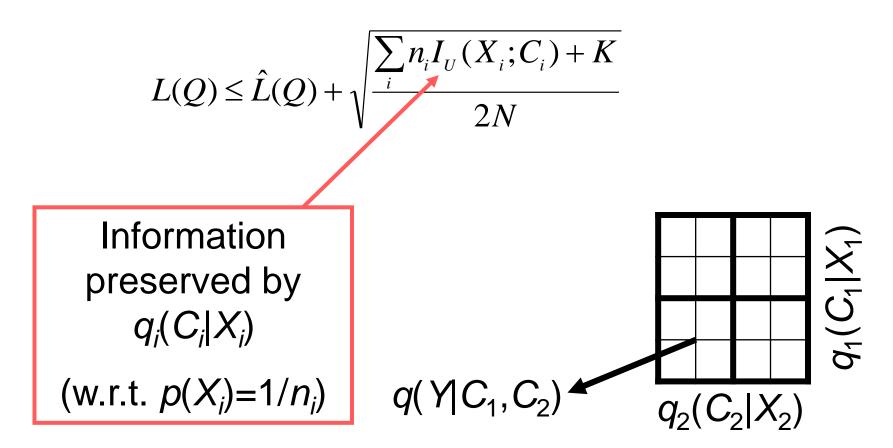
Relate with generalization properties

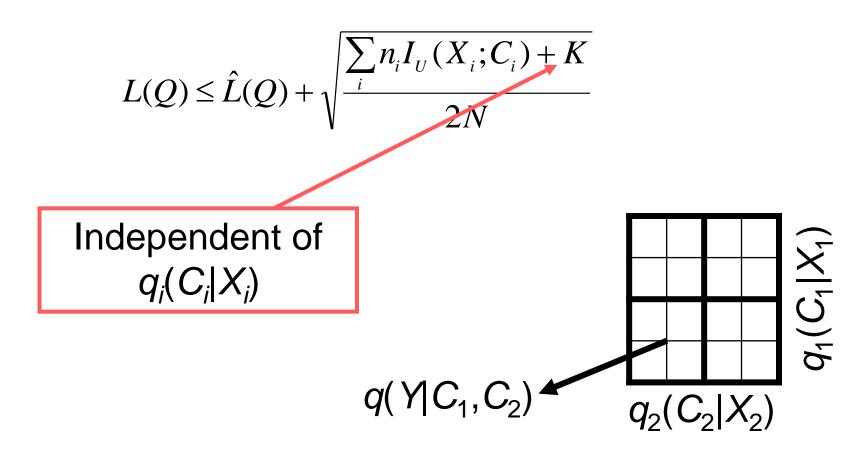
Some Definitions

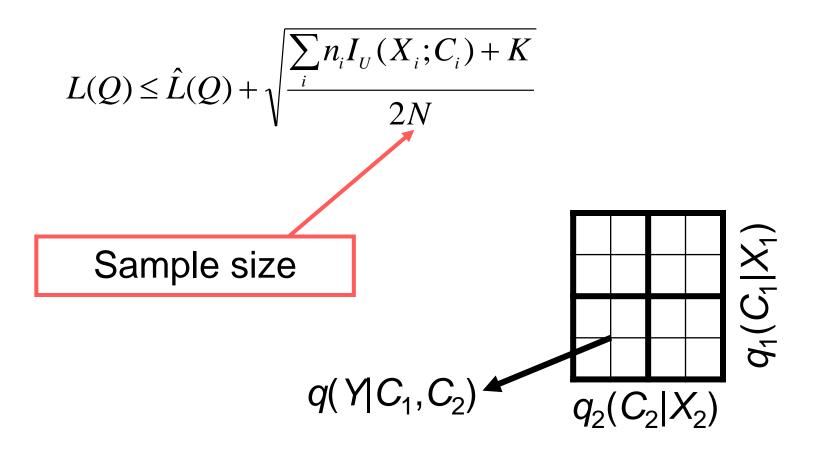
- Classification via Stochastic Grid Clustering:
 - A set of stochastic mappings $q_i(C_i|X_i)$
 - A classification rule $q(Y|C_1,...,C_d)$
- X_2 Collectively denote: $-Q = \{\{q_i(C_i|X_i)\}, q(Y|C_1,...,C_d)\}_{X_i}$ Y $q(Y|C_1, C_2)$







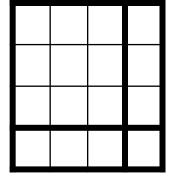




• With probability $\geq 1-\delta$:

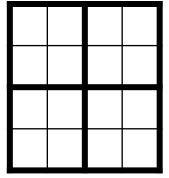
 $L(Q) \leq \hat{L}(Q)$

Optimization tradeoff: Empirical loss vs. "Effective" partition complexity



 $(n_i I_U(X_i;C_i)) + K$

2N



Lower Complexity

Higher Complexity

$$L(Q) \le \hat{L}(Q) + \sqrt{\frac{\sum_{i} n_i I_U(X_i; C_i) + K}{2N}}$$

$$K = \sum_{i} \left(m_{i} \ln n_{i} + \frac{(\ln n_{i} + 1)^{2}}{4} \right) + \left(\prod_{i} m_{i} \right) \ln |Y| + \frac{1}{2} \ln(4N) + \ln \frac{1}{\delta}$$

$$m_{i} = |C_{i}| \quad \text{Logarithmic} \quad \text{Number of} \\ \text{in } n_{i} \quad \text{partition cells} \quad \text{``usual stuff''}$$

• Start with the PAC-Bayesian bound: $L(Q) \le \hat{L}(Q) + \sqrt{\frac{D(Q \parallel P) + \ln(4N)/2 + \ln(1/\delta)}{2N}}$ - [McAllester 99], [Maurer 04]

- Start with the PAC-Bayesian bound: $L(Q) \le \hat{L}(Q) + \sqrt{\frac{D(Q \parallel P) + \ln(4N)/2 + \ln(1/\delta)}{2N}}$ - [McAllester 99], [Maurer 04]
- Design a combinatorial prior *P(h)* by counting the number of hard partitions

• Start with the PAC-Bayesian bound: $L(Q) \le \hat{L}(Q) + \sqrt{\frac{D(Q \parallel P) + \ln(4N)/2 + \ln(1/\delta)}{2N}}$

- [McAllester 99], [Maurer 04]

- Design a combinatorial prior *P(h)* by counting the number of hard partitions
- Calculate D(Q||P)

• Start with the PAC-Bayesian bound: $L(Q) \le \hat{L}(Q) + \sqrt{\frac{D(Q \parallel P) + \ln(4N)/2 + \ln(1/\delta)}{2N}}$

- [McAllester 99], [Maurer 04]

- Design a combinatorial prior *P(h)* by counting the number of hard partitions
- Calculate D(Q||P)
- Details: at the paper/poster

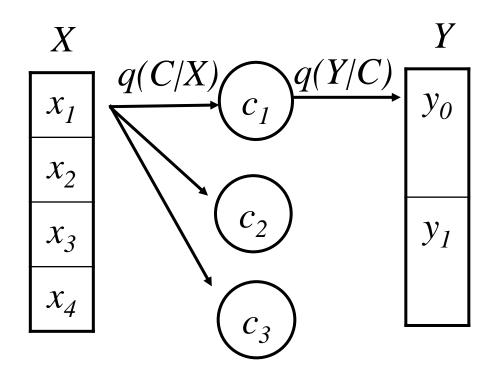
Messages

- For Clustering:
 - Evaluate clustering by its generalization properties on the task it is designed for
- For Classification:
 - Unify feature values to amplify statistical reliability

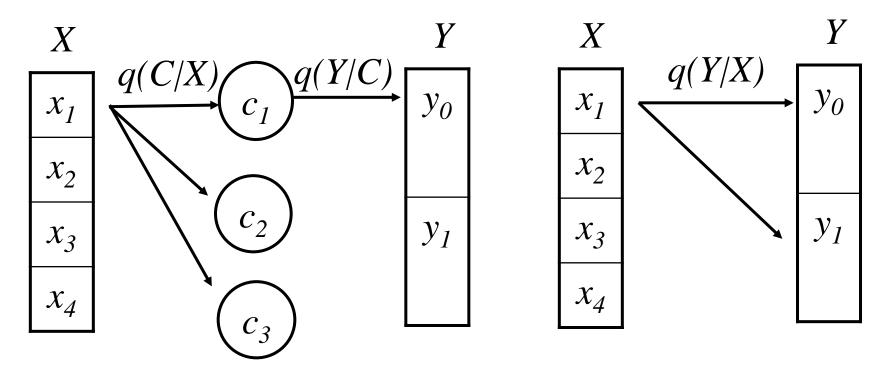
Classification by a Single Feature

- A tighter and simpler bound
- Application: Feature Ranking

Classification by a Single Feature

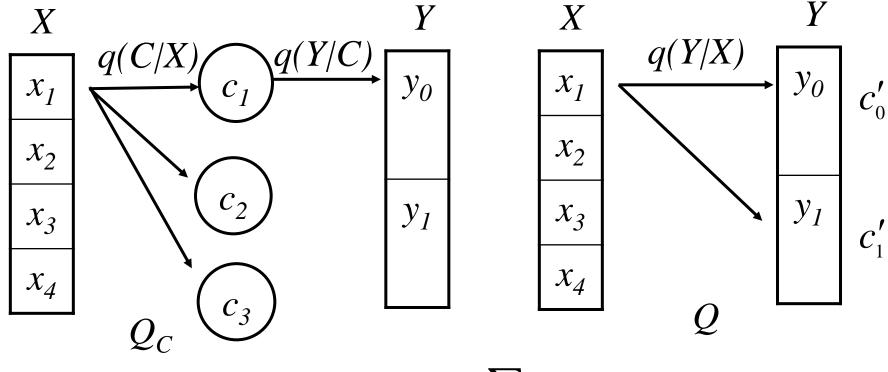


Equivalent "Direct Mapping"



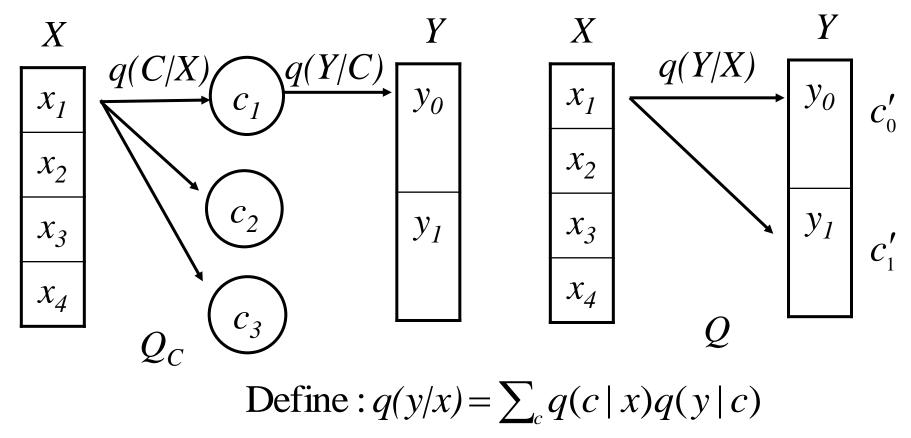
Define: $q(y|x) = \sum_{c} q(c | x)q(y | c)$

Optimality of Direct Mappings



Define: $q(y|x) = \sum_{c} q(c \mid x)q(y \mid c)$

Optimality of Direct Mappings



 $\hat{L}(Q_C) = \hat{L}(Q), \quad I_U(X;C) \ge I_U(X;Y)$

$$L(Q) \le \hat{L}(Q) + \sqrt{\frac{nI_U(X;Y) + K'}{2N}}$$

$$L(Q) \le \hat{L}(Q) + \sqrt{\frac{nI_U(X;Y) + K'}{2N}}$$

• Tighter than the bound on $L(Q_C)$

$$L(Q) \le \hat{L}(Q) + \sqrt{\frac{nI_U(X;Y) + K'}{2N}}$$

- Tighter than the bound on $L(Q_C)$
- Holds for any classification rule q(Y|X)

$$L(Q) \le \hat{L}(Q) + \sqrt{\frac{nI_U(X;Y) + K'}{2N}}$$

- Tighter than the bound on $L(Q_C)$
- Holds for any classification rule q(Y|X)
- Can be optimized (gradient descent) with respect to q(Y|X) to provide an optimal classification rule

$$L(Q) \le \hat{L}(Q) + \sqrt{\frac{nI_U(X;Y) + K'}{2N}}$$

- Tighter than the bound on $L(Q_C)$
- Holds for any classification rule q(Y|X)
- Can be optimized (gradient descent) with respect to q(Y|X) to provide an optimal classification rule
- No need for intermediate clustering
 Only for a single feature

Some Insights $L(Q) \le \hat{L}(Q) + \sqrt{\frac{nI_U(X;Y) + K'}{2N}}$

• $\hat{L}(Q)$ is minimized by $q_{ml}(y|x)$

Some Insights $L(Q) \le \hat{L}(Q) + \sqrt{\frac{nI_U(X;Y) + K'}{2N}}$

- $\hat{L}(Q)$ is minimized by $q_{ml}(y|x)$
- For $I_U(X; Y)=0$, L(Q) is minimized by $q_{ml}(y)$

Some Insights $\hat{I}(Q) = \sqrt{nI_U(X;Y) + K'}$

$$L(Q) \le \hat{L}(Q) + \sqrt{\frac{nI_U(X;Y) + K}{2N}}$$

- $\hat{L}(Q)$ is minimized by $q_{ml}(y|x)$
- For $I_U(X; Y)=0$, L(Q) is minimized by $q_{ml}(y)$
- Thus L(Q) is minimized by smoothing $q_{ml}(y|x)$ toward $q_{ml}(y)$

Application: Feature Ranking

- Rank features by their generalization potential
 - And not mutual information or correlation with the label
- Especially important for features of different cardinalities and small sample

– Example: Y=cancer/no_cancer

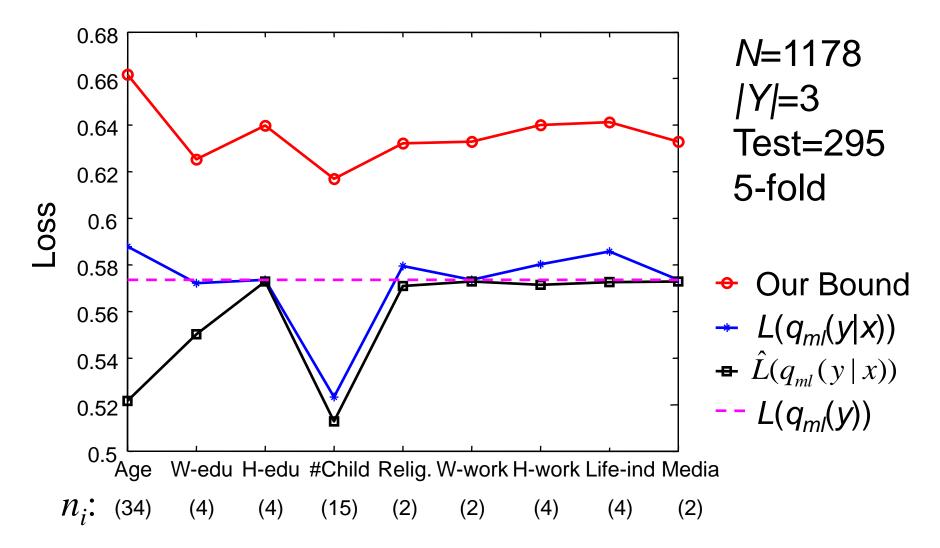
 X_1 =smoking/not_smoking X_2 =year_of_birth

Related work

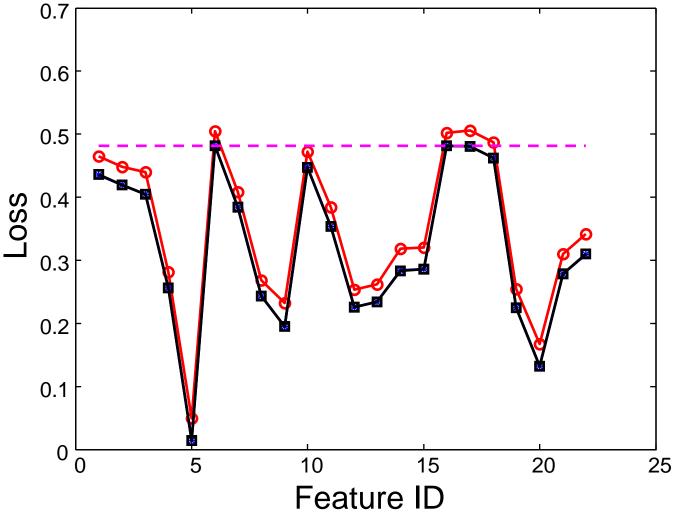
- Sabato, Shalev-Shwartz, COLT07
 - Generalization bound for $q(Y|X)=\hat{p}(Y|X)$ (empirical distribution)
- Our work:

- Any q(Y|X), in particular $q_{ml}(Y|X)$

Contraceptive Method Choice

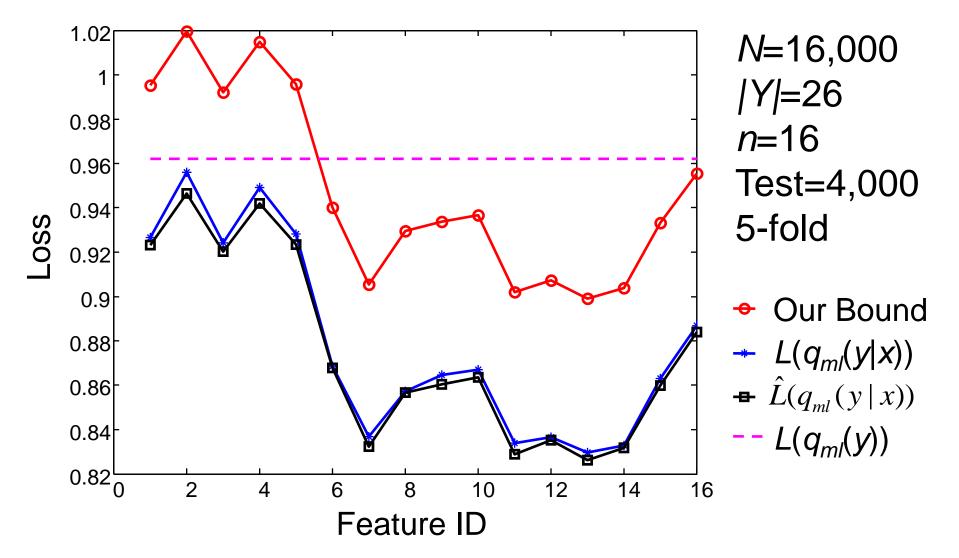


Mushrooms



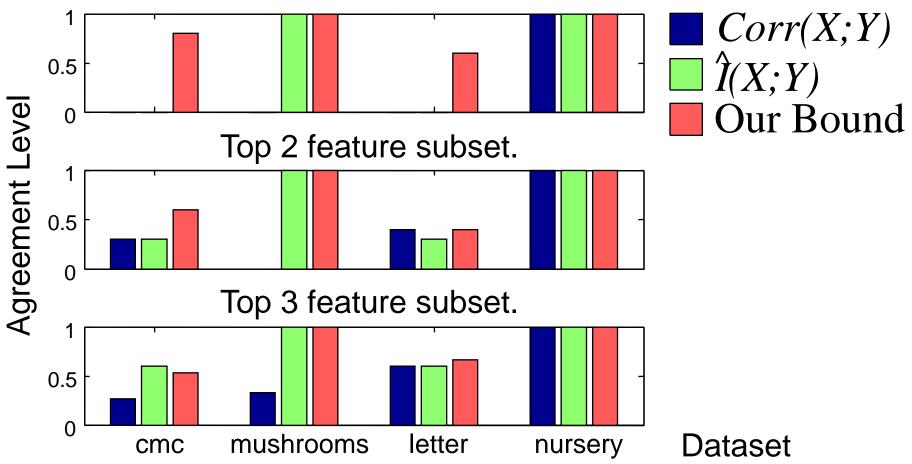
- N=6,499 |Y|=2 n_i=1..10 Test=1,625 5-fold
- Our Bound • $L(q_{ml}(y|x))$ • $\hat{L}(q_{ml}(y|x))$ - $L(q_{ml}(y))$

Letters



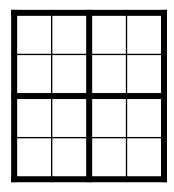
Comparison with MI and Corr

Top 1 feature subset.



Summary

- Generalization bound for multiclassification based on grid clustering
- Unify feature values to amplify statistics
- Evaluation of clustering by its generalization power on a given task
- Feature Ranking
- Limitation: high dimensions



Future Work

 Derive a generalization bound for general graphical models

