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Multi-Classification
by Categorical Features
Example: Collaborative Filtering

Ratings e = e e
E
14
1 3

1
missing

Viewers (X,)

MovieLens Data Movies (X,)



Multi-Classification via Grid Clustering

Ratings |
bar g ‘
5
I q) i
4 2|

| 3 2
- S v
l 1 e S
| |missing Movies (X,)

[Seldin, Slonim & Tishby, NIPS06]



Question: which partition Is better?

Some other
partition

 Statistical Reliability vs. Precision Tradeoff

The Approach We Take

* Relate with generalization properties



Some Definitions

* Classification via Stochastic Grid
Clustering:

— A set of stochastic mappings g;(C;| X))
- A classification rule q(Y|Cy,..Co)  x
* Collectively denote:

- Q = {a,(C| Xy}, Q(Y|C1’--’Cd)}x1

q(Y[C.,C))




Generalization Bound

* With probability = 1-0:
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Generalization Bound

* With probability = 1-0:
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Information
preserved by
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Generalization Bound

* With probability = 1-0:
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Generalization Bound

* With probability = 1-0:
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Generalization Bound

* With probability = 1-0:
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Optimization tradeofft:
Empirical loss vs.
“Effective” partition _
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Generalization Bound

* With probability = 1-0:

K = Z[mi Inn, + (In n‘4+1)2j
\' J

L(Q)Sﬁ(Q)+\/ i

2.1, (X;;C) K

2N

1 1
+(Hmijln Y |+§In(4N)+Ing

m=|Cj|

\ )

e —~ Y

Logarithmic || Number of “usual stuff’
In N, partition cells




Proof Idea

 Start with the PAC-Bayesian bound:
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Proof Idea

Start with the PAC-Bayesian bound:

D(Q| P)+In(4N)/2+In(1/5)

L(Q)< li(Q)+\/

2N

— [McAllester 99], [Maurer 04]

Design a combinatorial prior P(h) by
counting the number of hard partitions

Calculate D(Q
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|P)

paper/poster



Messages

* For Clustering:

— Evaluate clustering by its generalization
properties on the task it is designed for

 For Classification:

— Unify feature values to amplify statistical
reliability



Classification by a Single Feature

A tighter and simpler bound
* Application: Feature Ranking



Classification by a Single Feature
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Equivalent “Direct Mapping”
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Optimality of Direct Mappings
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Optimality of Direct Mappings
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A Bound for Direct Mappings
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A Bound for Direct Mappings

nl, (X;Y)+K'
2N

L(Q)<L(Q) +J

Tighter than the bound on L(Q.)
Holds for any classification rule q(Y|X)

Can be optimized (gradient descent) with
respect to g(Y|X) to provide an optimal
classification rule

No need for intermediate clustering

— Only for a single feature



Some Insights
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Some Insights

nl, (X;Y)+K'
2N

L(Q)<L(Q) +J

. L(Q)is minimized by g, (y|x)
* For I,(X;Y)=0, L(Q) is minimized by g,,,(y)

* Thus L(Q) Is minimized by smoothing q,,(y|x)
toward q,,,(y)



Application: Feature Ranking

* Rank features by their generalization
potential

— And not mutual information or correlation
with the labe

» Especially important for features of
different cardinalities and small sample
— Example: Y=cancer/no_cancer

X,;=smoking/not_smoking
X,=year_of birth




Related work

« Sabato, Shalev-Shwartz, COLTO7Y
— Generalization bound for q(Y|X)=p(Y|X)
(empirical distribution)
* Our work:
— Any q(Y|X), in particular g,,(Y|X)
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Agreement Level

Comparison with Ml and Corr

Top 1 feature subset.
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Summary

Generalization bound for multi-
classification based on grid clustering

Unify feature values to amplify statistics

Evaluation of clustering by its
generalization power on a given task

Feature Ranking
Limitation: high dimensions




Future Work

* Derive a generalization bound for
general graphical models
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Grid Clustering Factor Model



